2,801 research outputs found

    Thermally induced gluten modification observed with rheology and spectroscopies

    Get PDF
    The protein vital gluten is mainly used for food while interest for non-food applications, like biodegradable materials, increases. In general, the structure and functionality of proteins is highly dependent on thermal treatments during production or modification. This study presents conformational changes and corresponding rheological effects of vital wheat gluten depending on temperature. Dry samples analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermalgravimetric analysis coupled with mass spectrometry (TGA-MS) show surface compositions and conformational changes from 25 to 250 °C. Above 170 °C, XPS reveals a decreased N content at the surface while FTIR band characteristics for β-sheets prove structural changes. At 250 °C, protein denaturation accompanied by a significant mass loss due to dehydration and decarbonylation reactions is observed. Oscillatory measurements of optimally hydrated vital gluten describing network properties of the material show two structural changes along a temperature ramp from 25 to 90 °C: at 56–64 °C, the temperature necessary to trigger structural changes increases with the ratio of gliadin to total protein mass, determined by reversed-phase high performance liquid chromatography (RP-HPLC). At a temperature of 79–81 °C, complete protein denaturation occurs. FTIR confirms the denaturation process by showing band shifts with both temperature steps

    Statistical physics and stromatolite growth: new perspectives on an ancient dilemma

    Full text link
    This paper outlines our recent attempts to model the growth and form of microbialites from the perspective of the statistical physics of evolving surfaces. Microbialites arise from the environmental interactions of microbial communities (microbial mats). The mats evolve over time to form internally laminated organosedimentary structures (stromatolites). Modern day stromatolites exist in only a few locations, whereas ancient stromatolitic microbialites were the only form of life for much of the Earth's history. They existed in a wide variety of growth forms, ranging from almost perfect cones to branched columnar structures. The coniform structures are central to the heated debate on the oldest evidence of life. We proposed a biotic model which considers the relationship between upward growth of a phototropic or phototactic biofilm and mineral accretion normal to the surface. These processes are sufficient to account for the growth and form of many ancient stromatolities. These include domical stromatolites and coniform structures with thickened apical zones typical of Conophyton. More angular coniform structures, similar to the stromatolites claimed as the oldest macroscopic evidence of life, form when the photic effects dominate over mineral accretion.Comment: 8 pages, 3 figures. To be published in Proceedings of StatPhys-Taiwan 2004: Biologically Motivated Statistical Physics and Related Problems, 22-26 June 200

    From farm to fork - a life cycle assessment of fresh Austrian pork

    Get PDF
    With 7.5% total nutritional value, pork is a staple food for many members of the Austrian population. Among members of the general public, little is known about the environmental impacts "from farm to fork" in the production of pork. This paper identifies three main impact categories for the environmental profile of Austrian pork using the Life Cycle Assessment (LCA) method. In a transparent and comprehensive manner, this LCA studied environmental impacts occurring throughout the production chain of pork, also including the transport and consumption stages. The results are expressed in terms of the global warming potential (GWP), soil acidification and eutrophication, specifically in CO2-equivalents, SO2-equivalents and NO3-equivalents normalized to one kg of fresh Austrian pork (carcass weight) as the functional unit. The main results of the study indicated that the environmental burden is primarily related to the farming stage: 92.3% of GWP, 98.4% of soil acidification and 95.4% of eutrophication. The processes taking place after the agriculture stage (i.e., during the slaughtering stage, retail market and consumption) play a minor role, except for the relative impact of eutrophication during the slaughtering stage. The transportation that took place between the different life cycle stages only marginally influenced the emissions analysed, with private transport from the retail market to the household contributing most of the emissions considered in this part of the life cycle. These results point to the farming stage as the main focus for future improvements. Due to its high contribution to the GWP, soil acidification and eutrophication potential, enhancing the efficiency and environmental protection measures implemented during the farming stage (or improving the choice of commodities used from feed production) could generate the highest reductions in impacts on soil acidification, eutrophication and potentially on the global climate

    An interleukin-1 polymorphism additionally intensified by atopy as prognostic factor for aseptic non-mechanical complications in metal knee and hip arthroplasty

    Get PDF
    Background: In contrast to infection or mechanical issues joint replacement failure following inflammatory adverse reactions is poorly understood. Objective: To assess the association of IL-1β polymorphisms and history of allergy with aseptic non-mechanical complications following arthroplasty. Methods: In 102 patients with aseptic non-mechanically caused symptomatic knee or hip arthroplasty (SA) and 93 patients with asymptomatic arthroplasty (AA) questionnaire-based history, patch test with at least standard series, lymphocyte transformation test (LTT) with nickel, cobalt and chromium and interleukin-1 polymorphism analysis were done. Three polymorphisms of the IL1B gene [IL-1b -3954 (rs1143634), IL-1b -511 (rs16944) and IL-1b -31 (rs1143627)] and one polymorphism of the IL1RN gene [IL1RN intron 2, variable number of tandem repeats, VNTR (rs2234663)] were assessed by PCR and gel electrophoresis. Results: We found no significant difference in smoking history and atopy but 25% versus 10% of self-reported metal allergy in SA versus AA; the patch test (respective, LTT) for metal sensitivity was more often positive in SA patients. The allele 498 bp of the IL1RN polymorphism occurred significantly more often in the SA group (37% versus 11%; p < 0.0001). Upon additional presence of atopy, the difference was even greater (60% vs 10%) (p < 0.000001). There was no association of IL-1 polymorphisms with metal allergy. Conclusion: The IL1RN VNTR allele 498 bp was strongly associated with SA. In patients with a history of atopy, presence of the IL1RN VNTR allele 498 bp led to a four-fold higher SA prevalence compared to patients without this allele

    The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group

    Get PDF
    While the properties of the Kondo model in equilibrium are very well understood, much less is known for Kondo systems out of equilibrium. We study the properties of a quantum dot in the Kondo regime, when a large bias voltage V and/or a large magnetic field B is applied. Using the perturbative renormalization group generalized to stationary nonequilibrium situations, we calculate renormalized couplings, keeping their important energy dependence. We show that in a magnetic field the spin occupation of the quantum dot is non-thermal, being controlled by V and B in a complex way to be calculated by solving a quantum Boltzmann equation. We find that the well-known suppression of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic dephasing processes induced by the current through the dot. We calculate the corresponding decoherence rate, which serves to cut off the RG flow usually well inside the perturbative regime (with possible exceptions). As a consequence, the differential conductance, the local magnetization, the spin relaxation rates and the local spectral function may be calculated for large V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect -- 40 Years after the Discovery", some typos correcte

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    In search of phylogenetic congruence between molecular and morphological data in bryozoans with extreme adult skeletal heteromorphy

    Get PDF
    peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsab20© Crown Copyright 2015. This document is the author's final accepted/submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Panspermia, Past and Present: Astrophysical and Biophysical Conditions for the Dissemination of Life in Space

    Full text link
    Astronomically, there are viable mechanisms for distributing organic material throughout the Milky Way. Biologically, the destructive effects of ultraviolet light and cosmic rays means that the majority of organisms arrive broken and dead on a new world. The likelihood of conventional forms of panspermia must therefore be considered low. However, the information content of dam-aged biological molecules might serve to seed new life (necropanspermia).Comment: Accepted for publication in Space Science Review
    • …
    corecore